Gas Permeable Plates - Live Cell Imaging - o FREP, FRAT, HCA/HCS, & LCM ## Cells "Experience" Controlled O₂ Levels It has been shown that culturing cells at 18-21% O_2 (ambient conditions) yields altered phenotypes and gene-expression compared to culturing at physiologic levels^{1,2,3}. Additionally, abnormally low O_2 has been shown to be responsible for pathophysiology. Consequently, the need for cellular studies to be done at biologically relevant pericellular levels of O₂ has become apparent. Unfortunately pericellular O_2 control with standard plates and incubation techniques is challenging. Gaseous O_2 levels are a poor indicator of pericellular O_2 levels due to the long diffusion times needed to equilibrate media with the gaseous O_2 level coupled with the potential of cellular O_2 consumption exceeding the diffusion^{4,5,6,7}. The COY Permeable Plates take advantage of historically proven technology by changing the design of the multi-well plates to enable adherent cell microenvironments to be at controlled physiologic O_2 levels. ### Gas Permeable Membrane Replaces Bottom of the Wells Strong 25µm polymer film has high gas transfer rate while retaining liquid - 300% elongation with blunt objects - O₂ Permeability > 6300 cm³/m²*d*bar - CO₂ Permeability > 7000 cm³/m²*d*bar Slide Plate ### Tissue Culture Surface - Well-established plasma surface modification includes amination - Suitable for growing most adherent cells (e.g. HEK U293, HepG2, MCF-7) - Coating with extra cellular matrix proteins is recommended for some very sensitive cell lines (e.g. PC-12) and some primary cells Controlled O2 Levels from your incubator, glove box, or cabinet transfer directly to the microenvironment of the cells growing on the membrane Ideal for intermittent hypoxia studies where the cell microenvironments must change in response to rapid cycling of gaseous O2 levels # O2 Diffusion Slower than O2 Consumption Cells Experience Non-Desired O2 Levels #### **Standard Plates** Average pericellular pO_2 levels of MEF cells plated at differing densities (100,000, 33,000, 10,000 and 0 cells/cm2) and exposed to A) ~19%, and B) 7% ambient pO_2 as controlled by a Coy O_2 Controlled Glove Box. n=3 for each treatment. 1 ml media/well. At both 19% and 7% O_2 , diffusion is unable to keep up with the O_2 loss in media due to respiration. From Lynn (2011)⁷ # O2 Permeates the Membrane Bottom of Wells Cells Experience the <u>Desired</u> O2 Level ## Consistency Between pO₂ in Gas and Pericellular O₂ shown in 1993 using analogous plates Steady-state pericellular pO₂ (measured up to 24h) in confluent Hep G2 cultures in dishes with gas-permeable bottom (0.5ml medium/cm2) vs. pO₂ of incubation gas (n=4). From Wolff (1993)⁶. [data predates existence of Coy Gas Permeable Plates] ### **Elevated Plate Holder for Solid Shelves** Holder maintains space under plate for optimum gas exchange during: - Use on non-perforated incubation shelves - o O₂ Cycling for Intermittent Hypoxia studies Plate Holder available with and without sensor support Perfect for Imaging, UV analysis or automated measurements ## Film has unique set of properties enabling support of cell physiology & sophisticated imaging technology - High Resolution Live Cell Imaging - Fluorescence Resonance Energy Transfer (FRET) - Fluorescence Recovery after Photobleaching (FRAP) - Laser Scanning Confocal Microscopy (LCM) - Low Intensity Fluorescence Film "Transparent" to UV-A and UV-B Light HeLa Cell with JC-1 mitochondrial staining and Hoechst3342 DNA Staining #### **Part Numbers and Available Formats** Ask about any other desired sizes and formats | | 24 –well | 96-well* | 6-well | Slide Plate**
(1 well) | Slide Plate**
(2 well) | |------------------------------|---------------------|------------|--------------------------|---------------------------|---------------------------| | Coy Item # | 8602000 | 8602001 | Coming Summer
of 2012 | 8602002 | 8602003 | | Inner Well Diameter (bottom) | 13.2mm dia | 6mm dia | | 52.6 x 20.6mm | 24.25 x 20.6mm | | Total Volume/Well | 1880 µl | 428 µl | | 10.84 ml | 5.04 ml | | Suggested Working
Volume | 500-1000 μl | 100-200 μΙ | | 2000 μΙ | 1000 μΙ | | Material of Body of
Plate | Black Polystyrene | |) | Cycloolefin | | | Lid | One with each plate | | | | | | Sterile | Yes, sterile bagged | | | | | | Packaging Format | 1/bag and box of 20 | | | 4/bag and box of 80 | | - * Compliant to SBS (Society for Biomolecular Screening) standards formats - ** Reusable metal clip available to extend plate to full length of standard microscope slide (76mm) ### Bibliography - ¹ Atkuri KR, Herzenberg LA, Niemi AK, Cowan T, Herzenberg LA. 2007. Importance of culturing primary lymphocytes at physiological oxygen levels. Proc Natl Acad Sci U S A. 104(11): 4547-4552. - ² Ivanovic Z. 2009. Hypoxia or in situ normoxia: The stem cell paradigm. J Cell Physiol. 219(2): 271-5. - ³ Sahaf B, Atkuri K, Heydari K, Malipatlolla M, Rappaport J, Regulier E, Herzenberg LA, Herzenberg LA. 2008. Culturing of human peripheral blood cells reveals unsuspected lymphocyte responses relevant to HIV disease. Proc Natl Acad Sci U S A. 105(13): 5111-5116. - ⁴Wion D, Christen T, Barbier EL, Coles JA. 2009. PO2 matters in stem cell culture. Cell Stem Cell. 5(3): 242-243. - ⁵ Thomas PC, Halter M, Tona A, Raghavan SR, Plant AL, Forry SP. 2009. A noninvasive thin film sensor for monitoring oxygen tension during in vitro cell culture. Anal Chem. 81(22): 9239-9246. - ⁶ Wolff M, Fandrey J, Jelkmann W. 1993. Microelectrode measurements of pericellular PO2 in erythropoietin-producing human hepatoma cell cultures. Am J Physiol. 265(5 Pt 1): C1266-1270. - ⁷ Lynn SG, LaPres JJ, Studer-Rabeler K. 2011. Oxygen monitoring in cell cultures. Gen Engin Biotech News 31(6): 52-53. - ⁸ de Souza N. 2007. Too much of a good thing. Nat Methods. 4(5): 386.